3.196 \(\int \frac{x^2}{(b x^{2/3}+a x)^{3/2}} \, dx\)

Optimal. Leaf size=160 \[ \frac{512 b^4 \sqrt{a x+b x^{2/3}}}{21 a^6 \sqrt [3]{x}}-\frac{256 b^3 \sqrt{a x+b x^{2/3}}}{21 a^5}+\frac{64 b^2 \sqrt [3]{x} \sqrt{a x+b x^{2/3}}}{7 a^4}-\frac{160 b x^{2/3} \sqrt{a x+b x^{2/3}}}{21 a^3}+\frac{20 x \sqrt{a x+b x^{2/3}}}{3 a^2}-\frac{6 x^2}{a \sqrt{a x+b x^{2/3}}} \]

[Out]

(-6*x^2)/(a*Sqrt[b*x^(2/3) + a*x]) - (256*b^3*Sqrt[b*x^(2/3) + a*x])/(21*a^5) + (512*b^4*Sqrt[b*x^(2/3) + a*x]
)/(21*a^6*x^(1/3)) + (64*b^2*x^(1/3)*Sqrt[b*x^(2/3) + a*x])/(7*a^4) - (160*b*x^(2/3)*Sqrt[b*x^(2/3) + a*x])/(2
1*a^3) + (20*x*Sqrt[b*x^(2/3) + a*x])/(3*a^2)

________________________________________________________________________________________

Rubi [A]  time = 0.242094, antiderivative size = 160, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.21, Rules used = {2015, 2016, 2002, 2014} \[ \frac{512 b^4 \sqrt{a x+b x^{2/3}}}{21 a^6 \sqrt [3]{x}}-\frac{256 b^3 \sqrt{a x+b x^{2/3}}}{21 a^5}+\frac{64 b^2 \sqrt [3]{x} \sqrt{a x+b x^{2/3}}}{7 a^4}-\frac{160 b x^{2/3} \sqrt{a x+b x^{2/3}}}{21 a^3}+\frac{20 x \sqrt{a x+b x^{2/3}}}{3 a^2}-\frac{6 x^2}{a \sqrt{a x+b x^{2/3}}} \]

Antiderivative was successfully verified.

[In]

Int[x^2/(b*x^(2/3) + a*x)^(3/2),x]

[Out]

(-6*x^2)/(a*Sqrt[b*x^(2/3) + a*x]) - (256*b^3*Sqrt[b*x^(2/3) + a*x])/(21*a^5) + (512*b^4*Sqrt[b*x^(2/3) + a*x]
)/(21*a^6*x^(1/3)) + (64*b^2*x^(1/3)*Sqrt[b*x^(2/3) + a*x])/(7*a^4) - (160*b*x^(2/3)*Sqrt[b*x^(2/3) + a*x])/(2
1*a^3) + (20*x*Sqrt[b*x^(2/3) + a*x])/(3*a^2)

Rule 2015

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> -Simp[(c^(j - 1)*(c*x)^(m - j
+ 1)*(a*x^j + b*x^n)^(p + 1))/(a*(n - j)*(p + 1)), x] + Dist[(c^j*(m + n*p + n - j + 1))/(a*(n - j)*(p + 1)),
Int[(c*x)^(m - j)*(a*x^j + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, c, j, m, n}, x] &&  !IntegerQ[p] && NeQ[n, j
] && ILtQ[Simplify[(m + n*p + n - j + 1)/(n - j)], 0] && LtQ[p, -1] && (IntegerQ[j] || GtQ[c, 0])

Rule 2016

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(c^(j - 1)*(c*x)^(m - j +
 1)*(a*x^j + b*x^n)^(p + 1))/(a*(m + j*p + 1)), x] - Dist[(b*(m + n*p + n - j + 1))/(a*c^(n - j)*(m + j*p + 1)
), Int[(c*x)^(m + n - j)*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[
n, j] && ILtQ[Simplify[(m + n*p + n - j + 1)/(n - j)], 0] && NeQ[m + j*p + 1, 0] && (IntegersQ[j, n] || GtQ[c,
 0])

Rule 2002

Int[((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(a*x^j + b*x^n)^(p + 1)/(a*(j*p + 1)*x^(j -
1)), x] - Dist[(b*(n*p + n - j + 1))/(a*(j*p + 1)), Int[x^(n - j)*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, j,
 n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && ILtQ[Simplify[(n*p + n - j + 1)/(n - j)], 0] && NeQ[j*p + 1, 0]

Rule 2014

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> -Simp[(c^(j - 1)*(c*x)^(m - j
+ 1)*(a*x^j + b*x^n)^(p + 1))/(a*(n - j)*(p + 1)), x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && N
eQ[n, j] && EqQ[m + n*p + n - j + 1, 0] && (IntegerQ[j] || GtQ[c, 0])

Rubi steps

\begin{align*} \int \frac{x^2}{\left (b x^{2/3}+a x\right )^{3/2}} \, dx &=-\frac{6 x^2}{a \sqrt{b x^{2/3}+a x}}+\frac{10 \int \frac{x}{\sqrt{b x^{2/3}+a x}} \, dx}{a}\\ &=-\frac{6 x^2}{a \sqrt{b x^{2/3}+a x}}+\frac{20 x \sqrt{b x^{2/3}+a x}}{3 a^2}-\frac{(80 b) \int \frac{x^{2/3}}{\sqrt{b x^{2/3}+a x}} \, dx}{9 a^2}\\ &=-\frac{6 x^2}{a \sqrt{b x^{2/3}+a x}}-\frac{160 b x^{2/3} \sqrt{b x^{2/3}+a x}}{21 a^3}+\frac{20 x \sqrt{b x^{2/3}+a x}}{3 a^2}+\frac{\left (160 b^2\right ) \int \frac{\sqrt [3]{x}}{\sqrt{b x^{2/3}+a x}} \, dx}{21 a^3}\\ &=-\frac{6 x^2}{a \sqrt{b x^{2/3}+a x}}+\frac{64 b^2 \sqrt [3]{x} \sqrt{b x^{2/3}+a x}}{7 a^4}-\frac{160 b x^{2/3} \sqrt{b x^{2/3}+a x}}{21 a^3}+\frac{20 x \sqrt{b x^{2/3}+a x}}{3 a^2}-\frac{\left (128 b^3\right ) \int \frac{1}{\sqrt{b x^{2/3}+a x}} \, dx}{21 a^4}\\ &=-\frac{6 x^2}{a \sqrt{b x^{2/3}+a x}}-\frac{256 b^3 \sqrt{b x^{2/3}+a x}}{21 a^5}+\frac{64 b^2 \sqrt [3]{x} \sqrt{b x^{2/3}+a x}}{7 a^4}-\frac{160 b x^{2/3} \sqrt{b x^{2/3}+a x}}{21 a^3}+\frac{20 x \sqrt{b x^{2/3}+a x}}{3 a^2}+\frac{\left (256 b^4\right ) \int \frac{1}{\sqrt [3]{x} \sqrt{b x^{2/3}+a x}} \, dx}{63 a^5}\\ &=-\frac{6 x^2}{a \sqrt{b x^{2/3}+a x}}-\frac{256 b^3 \sqrt{b x^{2/3}+a x}}{21 a^5}+\frac{512 b^4 \sqrt{b x^{2/3}+a x}}{21 a^6 \sqrt [3]{x}}+\frac{64 b^2 \sqrt [3]{x} \sqrt{b x^{2/3}+a x}}{7 a^4}-\frac{160 b x^{2/3} \sqrt{b x^{2/3}+a x}}{21 a^3}+\frac{20 x \sqrt{b x^{2/3}+a x}}{3 a^2}\\ \end{align*}

Mathematica [A]  time = 0.0714595, size = 85, normalized size = 0.53 \[ \frac{32 a^3 b^2 x^{4/3}-64 a^2 b^3 x-20 a^4 b x^{5/3}+14 a^5 x^2+256 a b^4 x^{2/3}+512 b^5 \sqrt [3]{x}}{21 a^6 \sqrt{a x+b x^{2/3}}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/(b*x^(2/3) + a*x)^(3/2),x]

[Out]

(512*b^5*x^(1/3) + 256*a*b^4*x^(2/3) - 64*a^2*b^3*x + 32*a^3*b^2*x^(4/3) - 20*a^4*b*x^(5/3) + 14*a^5*x^2)/(21*
a^6*Sqrt[b*x^(2/3) + a*x])

________________________________________________________________________________________

Maple [A]  time = 0.006, size = 77, normalized size = 0.5 \begin{align*}{\frac{2\,x}{21\,{a}^{6}} \left ( b+a\sqrt [3]{x} \right ) \left ( 7\,{x}^{5/3}{a}^{5}-10\,{x}^{4/3}{a}^{4}b+16\,x{a}^{3}{b}^{2}-32\,{x}^{2/3}{a}^{2}{b}^{3}+128\,\sqrt [3]{x}a{b}^{4}+256\,{b}^{5} \right ) \left ( b{x}^{{\frac{2}{3}}}+ax \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(b*x^(2/3)+a*x)^(3/2),x)

[Out]

2/21*x*(b+a*x^(1/3))*(7*x^(5/3)*a^5-10*x^(4/3)*a^4*b+16*x*a^3*b^2-32*x^(2/3)*a^2*b^3+128*x^(1/3)*a*b^4+256*b^5
)/(b*x^(2/3)+a*x)^(3/2)/a^6

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{{\left (a x + b x^{\frac{2}{3}}\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b*x^(2/3)+a*x)^(3/2),x, algorithm="maxima")

[Out]

integrate(x^2/(a*x + b*x^(2/3))^(3/2), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b*x^(2/3)+a*x)^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{\left (a x + b x^{\frac{2}{3}}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(b*x**(2/3)+a*x)**(3/2),x)

[Out]

Integral(x**2/(a*x + b*x**(2/3))**(3/2), x)

________________________________________________________________________________________

Giac [A]  time = 1.14521, size = 151, normalized size = 0.94 \begin{align*} -\frac{512 \, b^{\frac{9}{2}}}{21 \, a^{6}} + \frac{6 \, b^{5}}{\sqrt{a x^{\frac{1}{3}} + b} a^{6}} + \frac{2 \,{\left (7 \,{\left (a x^{\frac{1}{3}} + b\right )}^{\frac{9}{2}} a^{48} - 45 \,{\left (a x^{\frac{1}{3}} + b\right )}^{\frac{7}{2}} a^{48} b + 126 \,{\left (a x^{\frac{1}{3}} + b\right )}^{\frac{5}{2}} a^{48} b^{2} - 210 \,{\left (a x^{\frac{1}{3}} + b\right )}^{\frac{3}{2}} a^{48} b^{3} + 315 \, \sqrt{a x^{\frac{1}{3}} + b} a^{48} b^{4}\right )}}{21 \, a^{54}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b*x^(2/3)+a*x)^(3/2),x, algorithm="giac")

[Out]

-512/21*b^(9/2)/a^6 + 6*b^5/(sqrt(a*x^(1/3) + b)*a^6) + 2/21*(7*(a*x^(1/3) + b)^(9/2)*a^48 - 45*(a*x^(1/3) + b
)^(7/2)*a^48*b + 126*(a*x^(1/3) + b)^(5/2)*a^48*b^2 - 210*(a*x^(1/3) + b)^(3/2)*a^48*b^3 + 315*sqrt(a*x^(1/3)
+ b)*a^48*b^4)/a^54